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The physiological status of an organism is able to influence
stem cell behaviour to ensure that stem cells meet the needs of
the organism during growth, and in response to injury and
environmental changes. In particular, the brain is sensitive to
metabolic fluctuations. Here we discuss how nutritional status
is able to regulate systemic and local insulin/IGF signalling so
as to control aspects of neural stem behaviour. Recent results
have begun to reveal how systemic signals are relayed to neural
stem cells through local interactions with a glial niche. Although
much still remains to be discovered, emerging parallels
between the regulation of Drosophila and mammalian stem
cells suggest a conserved mechanism for how the brain
responds to changes in nutritional state.
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Introduction

Throughout their lifetimes organisms modulate their
physiological state in response to their changing environ-
ment. This is achieved by signalling between organs that
can sense the environment, and those that are able to
respond to changing conditions and thereby maintain an
animal’s physiology in a stable state (‘homeostasis’). For
example, to achieve ‘energy homeostasis’ an animal’s
energy needs must be closely matched with their food
intake and mobilisation of internal energy stores
(reviewed in [1,2]).

The brain is affected by changes in energy
metabolism

The brain, like other nutrition-sensitive organs such as
the liver and the pancreas, can be influenced by changes
in metabolic state [3-5] (see Figure 1). Overeating or
consumption of a high-fat diet has been shown to impair
neurogenesis in the hippocampus of rodents [6,7], while

dietary restriction enhances neurogenesis [8,9]. In adult
rodents subjected to three months of caloric restriction,
newly born neurons in the dentate gyrus, a region of the
brain instrumental in memory and learning, show
increased survival. Exercise is associated with enhanced
cognitive function in humans [10] while in rodents,
voluntary exercise promotes neurogenesis and the pro-
liferation of neural stem cells in the hippocampus [11] and
is associated with improved performance in various learn-
ing tasks [12,13]. On the contrary, diseases that lead to an
imbalance in sugar levels, such as diabetes, have been
correlated with cognitive decline in humans [14]. Rodent
models of diabetes exhibit compromised memory and
learning ability [7,15]. The underlying cause of this
cognitive impairment may be the reduced neurogenesis
observed in these animals [16]. How is the brain able to
respond to metabolic changes? What are the mechanisms
at work in sensing energy levels? What are the physio-
logical and cellular responses in the brain?

Insulin signalling is sensitive to nutritional
status

Insulin and insulin-like growth factors (IGF) are import-
ant regulators of growth and metabolism. The insulin/
IGF pathway is well conserved from invertebrates to
mammals. Insulin/IGFs bind to receptors on the cell
surface, which activate the canonical PI3K-Akt signalling
cascade (reviewed in [17]). This pathway impinges upon
two downstream effectors: 1) TOR kinase, which is acti-
vated by Akt (and separately by nutrients) and promotes
protein translation, and ii) FOXO, a transcription factor
that is phosphorylated by Akt and prevented from enter-
ing the nucleus.

Dietary restriction leads to reduced levels of circulating
insulin/IGF in both invertebrates and vertebrates
(reviewed in [18]). Studies carried out both 77 vitro and
in vivo suggest that insulin/IGF, or at least their well-
established downstream effectors, promote neurogenesis
through effects on neural stem cell proliferation or differ-
entiation [19-24,25°] and survival [26°]. Recent results
suggest a role for IGF-1 in the control of neural stem cell
division in mammals [27]. IGF-1 drives proliferation in
both the embryo and the adult (reviewed in [28,29].
Similarly loss of PTEN, an antagonist of PI3K, disrupts
the homeostatic control of proliferation and increases
neural stem cell self-renewal [30], whereas inhibition
of the PI3K-Akt pathway reduces DNA synthesis and
entry into S-phase. Therefore, insulin signalling plays a
key role in translating the general nutritional status of an
organism into a signal to which neural stem cells can
respond (Figure 2). Systemic regulation thus ensures that
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The brain senses and adapts to changes in organismal energy
metabolism.

Nutrition, exercise and disease are all factors that can influence energy
homeostasis. Changes in energy metabolism influence the behaviour of
neural stem cells and their progeny. This can impact brain physiology
and function affecting, for example, learning and memory.

stem cells meet the needs of an organism during growth,
and in response to changing environmental conditions.

Regulation of neural stem cell quiescence and
reactivation by nutritional stimuli

Neural stem cells in the mammalian subventricular zone
and hippocampal subgranular zone generate neurons
throughout life, alternating between periods of quiescence
(a mitotically dormant state) and proliferation [31-34]. An
important point of stem cell regulation, therefore, is the
decision whether to remain quiescent or to exit quiescence
and proliferate. Drosophila neural stem cells (or neuro-
blasts) transit through a period of quiescence separating
distinct embryonic and post-embryonic phases of prolifer-
ation [35-38]. Britton and Edgar found that the exit from
quiescence is physiologically coupled to larval growth and
development through a nutritional stimulus transmitted
via an organ called the fat body [39]. The fat body acts as a
sensor of global amino acid levels linking nutritional state

Nutrient control Spéder, Liu and Brand 725

to organismal growth [39,40]. It is able to store both
glycogen and fat, and thus serves a similar function to
the vertebrate liver and white adipose tissue [1,2] The fat
body is thought to emit a signal that acts on the CNS to
bring about neuroblast proliferation [39]. This signal,
originally called the fat body-derived mitogen (FBDM),
initiates cell growth in quiescent neuroblasts, and pro-
motes (or at least permits) cell cycle re-entry. For example,
quiescent neuroblasts isolated from starved animals can be
induced to reactivate when co-cultured iz vitro with fat
bodies from fed animals, suggesting that fat bodies alone
are able to emit the reactivation signal. Blocking the fat
body’s ability to sense amino acids by mutating the amino
acid transporter, Slimfast, or inhibiting TOR causes a
systemic decrease in larval growth and a concomitant
reduction in neuroblast reactivation [40,41°°].

Endocrine and paracrine influences on stem
cell reactivation

How do neuroblasts perceive the signal from the fat body
and respond to it? What is the link between systemic
regulation by the fat body and the local reactivation of
neuroblasts? Upon exit from quiescence neuroblasts must
first enlarge before proliferation, increasing their diameter
nearly two fold before recommencing cell division
[38,42°°]. Interestingly, in the developing mammalian
cortex, neural stem cell exit from quiescence also coincides
with an increase in cell size [30,43]. Transcriptome analysis
of Drosophila nerve cords revealed that expression of the
insulin-like peptides, ZIL.P2 and dIL.P6, parallels stem cell
reactivation and that this expression is lost upon amino acid
deprivation [44]. The insulin/IGF-like peptides in Droso-
phila, seven in total (for an extensive analysis, see [45]),
bind a single receptor (dInR), activating the PI3K-Akt
pathway that leads to cellular growth and proliferation
(reviewed in [46]). Activation of the insulin/IGF pathway
was shown to be essential for neuroblasts to exit quiescence
[44,47]. Furthermore, constitutive activation of PI3K-Akt
signalling in neuroblasts, drove neuroblast proliferation in
the absence of dietary protein, uncoupling neuroblast
reactivation from systemic control.

What is the source of insulin/IGF? The #ILP6 promoter
was found to drive expression in a set of stellate surface
glial cells overlying the neuroblasts, suggesting that these
glial cells might be the source of the signal that reactivates
neuroblasts [44]. Forced expression of insulin/IGF-like
peptides in glia is also able to drive neuroblast prolifer-
ation in the absence of dietary protein, whereas disrupting
vesicle trafficking in glia reduces neuroblast reactivation
[44,47]. Therefore neuroblasts respond to a local, not
systemic, source of insulin/IGFs. Exit from quiescence
appears to depend upon a nutrient-sensitive signal from
the fat body, an organ that acts as a systemic sensor [39].
The nutrient-sensitive TOR signalling pathway in the fat
body is required to emit this signal, once amino acids are
transported into fat body cells by Slimfast [40,41]. The as
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Insulin signalling is a key effector in conveying nutritional status to the brain.

Alterations in nutritional status can lead to the systemic, or local, release of insulin-related factors, which activate the insulin receptor/PI3K/Akt
pathway in neural stem cells. Insulin/IGF signalling has been shown to modulate stem cell reactivation, proliferation and differentiation, and possibly
also survival. It is noteworthy that the survival of stem cell progeny can also be directly affected by nutritional changes.

yet unidentified endocrine signal may then be respon-
sible for inducing glial cells to secrete dILPs, a paracrine
signal that acts locally on neighbouring neural stem cells.
T'herefore, in Drosophila, the nutritional status of the
organism is relayed to the nervous system via a systemic
sensor and a local, niche-like, transducer. The nutritional
signal ultimately results in induction of the insulin signal-
ling pathway and reactivation of neural stem cells
(Figure 3).

Nutrition-responsive glia control neural stem
cell reactivation

In mammals, glia form part of the adult neural stem cell
niche (reviewed in [48]), and astrocytes are thought to

play a key role in regulating neural stem cell proliferation
[49]. Astrocytes can promote neural stem cell proliferation
i vitro [50] and they express the pro-proliferative factors
FGF-2 and IGF-1 [51,52]. IGF-1 expression is induced in
stellate astrocytes (astroglia) [53,54] in response to CNS
injuries, and is believed to account for the rise in neural
stem cell division following cortical ischemia [53]. Dro-
sophila stellate glial cells, much like mammalian astro-
cytes, control the proliferation of neural stem cells and
exhibit many of the properties that define a niche [44,55].

Do mammalian glia act as a local, paracrine relay for a
systemic signal, as has been described in Drosophila, or are
they able to sense changes in nutrition and metabolic
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Nutritional status is translated into neural stem cell behaviour through a cascade of systemic and local relays.

In both vertebrates and invertebrates insulin/IGF signalling appears to be involved in relaying changes in systemic metabolic state to neural stem cells
and their progeny.

In Drosophila, amino acid levels are sensed by the fat body, the functional equivalent of the vertebrate liver and white adipose tissue, through the
amino acid transporter slimfast. In response to nutrition the fat body is thought to emit a systemic signal that, directly or indirectly, induces glial cells to
secrete insulin-like peptides (dILPs) locally. dILPs bind to the insulin receptor on underlying neural stem cells, activating the insulin/IGF signalling
pathway and triggering stem cells to exit quiescence. The identity of the fat body-derived signal and how it affects glial cells remain to be determined.
In mammals, the signalling pathway from nutrition to neural stem cells has not been as extensively characterised. It has been shown that nutritional
changes can modulate the levels of systemic insulin/IGF-1 through changes in the levels of histone deacetylase SIRT1 in the brain. In addition,

astrocytes can secrete insulin/IGF-1. However, a direct link between the two has yet to be demonstrated.

state directly? In mammals, dietary restriction leads to
increased expression in the brain of the histone deace-
tylase, SIRT1 [56,57]. Conversely, excessive caloric
intake resulting from a diet high in fat and sucrose leads
to decreased SIRT1 in the hippocampus and cerebral
cortex [58]. Thus the protein level of SIRT1 correlates
with nutritional status. Interestingly, the decrease in
systemic IGF-1 observed in response to dietary restriction
is dependent upon increased SIRT1 in the brain [59].
"This suggests that the brain itself may be able to sense
systemic changes in energy levels, and in turn regulate

the levels of insulin/IGF-1. Deciphering the sequence of
events between the local expression of SIRT'1 in the brain
and the systemic release of insulin/IGF1 will be instru-
mental in understanding the relationship between nutri-
tion and neural stem cells in mammals (Figure 3).

Conclusions

Recent research has advanced our understanding of how
organs communicate with one another to coordinate their
response to nutritional signals (‘integrative physiology’),
however much remains to be learned. With respect to the
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regulation of neural stem cells in Drosophila, the elusive
TOR-dependent fat body signal emitted in response to
nutrition has yet to be identified. Nor is it known whether
this signal acts directly on stellate glial cells, or if it
initiates a relay through one or more uncharacterised
factors. Finally, it will be of great interest to discover if
a similar relay system operates in the mammalian brain
and, by identifying the organs and molecules that are
involved, to understand how highly conserved are the
mechanisms regulating stem cell behaviour in the invert-
ebrate and the mammalian brain.
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